A Four-Parameter Corresponding-States Method for Prediction of Newtonian, Pure-Component Viscosity

K. J. Okeson^{1,2} and R. L. Rowley¹

Received February 20, 1990

The extended Lee-Kesler (ELK) method, introduced for calculating thermodynamic properties of polar as well as nonpolar fluids and their mixtures, has been adapted to the calculation of Newtonian, pure-fluid viscosity. The method is a four-parameter, corresponding-states technique requiring as input the critical temperature, critical pressure, a size/shape parameter α , and a polar interaction parameter β . Because α and β have been previously tabulated for many fluids (for calculation of thermodynamic properties) and may also be obtained directly from the radius of gyration and a single liquid density, respectively, the method contains no adjustable parameters and is predictive in nature. ELK viscosity predictions were compared to experimental data for nonpolar and polar fluids. For 36 different nonpolar fluids and a total of 5748 different points, the comparison yielded an absolute average deviation (AAD) of 7.88% with a bias of -4.45%. Similarly, the AAD was 10.62% with a bias of -5.34% for a comparison of 15 different polar fluids involving 1500 different points. With this method, viscosities can be calculated within the range $0.55 \le T_r \le 2.00$ and $0 < P_r \le 10$.

KEY WORDS: corresponding states; Lee-Kesler method; polar fluids; viscosity.

1. INTRODUCTION

Inconsistency between calculated properties is often a problem in industrial thermophysical property simulators because different prediction methods are used for different properties. For example, the enthalpy predictor may

¹ Department of Chemical Engineering, 350 CB, Brigham Young University, Provo, Utah 84602, U.S.A.

² Present address: Dow Corning Corporation, P.O. Box 310, Carrollton, Kentucky 41008, U.S.A.

produce a liquid property in a region where the vapor pressure equation indicates a gas phase should be present. A consistent method that can be used to calculate all the desired thermophysical properties from one set of fundamental constants would be convenient. The Lee-Kesler (LK) corresponding-states technique for prediction of thermodynamic properties of nonpolar fluids has found widespread use in property simulators since its introduction by Lee and Kesler [1] and is a probable candidate for such a generalized method. Wilding and Rowley [2] extended the LK method to pure-component polar fluids, and Wilding et al. [3] used this so-called extended Lee-Kesler (ELK) method to calculate vapor pressures. Recently, mixing rules have been developed for ELK which permit prediction of vapor-liquid equilibria in highly nonideal binary [4] and ternary [5] mixtures.

Corresponding-states techniques have been among the most fruitful methods for predicting transport properties. Of these, TRAPP [6] is perhaps the most widely used for nonpolar fluids. A variation of TRAPP for viscosity predictions of polar fluids was recently introduced by Hwang and Whiting [7]. Unfortunately, a viscosity acentric factor, different in value from the acentric factor used to calculate thermodynamic properties, is required in the latter method. A purely predictive method for polar-fluid transport properties which uses the same fundamental constants required for thermodynamic property calculation is certainly desirable.

In this study, ELK was chosen as the basis for a viscosity computational method because of its separation, at least in theory, of purely size/shape effects from polar effects. It was hoped that this separation would enable calculation of fluid viscosities over a wide range of conditions using the same constants and procedures as are currently used to predict equilibrium properties within the framework of the Lee-Kesler method.

2. ELK

2.1. Previous Development for Equilibrium Properties

In LK calculations, deviations from simple two-parameter corresponding states are attributed to acentric molecular interactions. In ELK, the molecular size/shape effects of nonpolar fluids are distinguished from effects due to oriented interactions, including dipole and weak associations. Thus, ELK can be viewed as a perturbation about a spherically symmetric reference fluid in terms of size/shape, α , and polar, β , parameters. At a given reduced temperature and pressure, any dimensionless configurational property of the fluid, J, may be expressed as a Taylor's series expansion about the simple fluid, which when truncated to linear terms is

$$J = J_0 + \left(\frac{\partial J}{\partial \alpha}\right)_{T_{\mathrm{t}}, P_{\mathrm{t}}, \beta} (\alpha - \alpha_0) + \left(\frac{\partial J}{\partial \beta}\right)_{T_{\mathrm{t}}, P_{\mathrm{t}}, \alpha} (\beta - \beta_0) + \mathcal{O}(\alpha^2, \beta^2, \alpha\beta) \quad (1)$$

The derivatives in Eq. (1) are evaluated using linear difference expressions in terms of known properties of reference fluids. As in the LK method, methane is used as the simple, spherical reference fluid (denoted as reference fluid 0 in the above expansion) and *n*-octane is used as reference fluid 1 to quantify deviations from the spherical case. In ELK, water is used as reference fluid 2 to account for polar effects upon properties. Reasonably accurate equations of state are used to calculate the properties of each real reference fluid at the desired reduced conditions, and the contributions are summed to provide a value for the unknown fluid at these conditions. Thus,

$$J = J_0 + \alpha \left(\frac{J_1 - J_0}{\alpha_1}\right) + \frac{\beta}{\beta_2} \left\{ J_2 - \left[J_0 + \alpha_2 \left(\frac{J_1 - J_0}{\alpha_1}\right)\right] \right\}$$
(2)

or, more simply,

$$J = J^{(0)} + \alpha J^{(1)} + \beta J^{(2)}$$
(3)

where superscript (i) indicates the deviation of J for reference fluid *i* (scaled by the difference in either α or β) from J for the simple reference fluid, J_0 , at the same reduced conditions. The simple reference fluid is assumed to obey two-parameter corresponding states. The deviation terms are computed from equations for the reference fluids in accordance with Eq. (2).

Values for α have been correlated in terms of the radius of gyration [2] to avoid inclusion of polar contributions and retain the integrity of the expansion shown in Eq. (1). Values for β were calculated from a single liquid density using J = Z in the above equations. Here Z is the compressibility factor. Values for α and β have been compiled [3] for many components.

2.2. Extension to Viscosity

Use of Eq. (3) to calculate shear viscosity, η , requires (1) a choice for the dimensionless property J, (2) equations for the reference fluid viscosities valid over a wide range of T_r and P_r , and (3) values of α and β . The reduced viscosity is commonly defined as

$$\eta_{\rm r} = \eta \xi \tag{4}$$

where

$$\xi = \left[\frac{RT_{\rm c}N_0^2}{P_{\rm c}^4M^3}\right]^{1/6} \tag{5}$$

A polynomial form for the real reference fluids' viscosity, shown in Table I, was obtained from Haar et al. [8]. The constants for water were obtained from the same source [8], while those for methane were regressed from experimental data obtained from the literature [9–14]. Due to the paucity of experimental data for *n*-octane, low-density Chapman-Enskog values and dense-gas values above $T_r = 1$, estimated from the method of Jossi et al. [15], were used to supplement experimental viscosities [10, 16–19]. The resulting equation is valid in the range $0 < P_r \leq 10$ and $0.55 \leq T_r \leq 2$, the intersection of the domains over which values were used to regress constants for the equations of the three reference fluids. The reference fluid equations represent available data quite well over the indicated domain except for the near-critical region. No critical enhancement was included. Graphical comparisons of experimental data and the equations in Table I over the applicability domain are available [20] and are not included here.

Although adjusting α and β to values unique for viscosity calculations would provide more flexibility and probably better agreement with experimental data, consistency of these parameters with equilibrium property calculations was considered essential. Unfortunately, water associates obscuring the appropriate value of α for use in viscosity calculations. In order to maintain the same set of α and β values for viscosity that are used in equilibrium property calculations, a value of -0.38 was required for α_2 . The choice of water for the polar reference fluid was necessitated by the paucity of viscosity data for all other polar fluids over the desired T_r and P_r range.

Computation of viscosity for a test fluid from Eq. (3) is conveniently performed with a computer program containing the reference fluid equations of state. Required input includes T_c , P_c , radius of gyration (or, equivalently, α), and a liquid density (or, equivalently, β). The reference fluid equations are in terms of T_r and ρ_r rather than T_r and P_r . Thus, the reference-fluid equations of state are first solved for densities at the input T and P conditions. The results presented in this paper were obtained from the computer implementation of Eq. (3). However, one can also make quick hand calculations with ELK using Tables II–VII, which contain reduced simple-fluid, size/shape deviation, and polar deviation terms as a function temperature and pressure. The saturation line separating liquidand vapor-phase values was drawn at the same locations as in previous LK tables for consistency. However, when using Tables II–VII, one must exer-

I. Equation													
	$\eta(ho, T)$	$=\eta^0(T)\exp\left[\left(\frac{\rho}{\rho^*}\right)\right]$	$\int_{i=0}^{l} \sum_{j=0}^{m} b_{ij} \left(\frac{T^*}{T} \right)^{m}$	$(-1)^i \left(\frac{\rho}{\rho^*} - 1\right)$									
	$\eta^{0}(T)$	$= \left(\frac{T}{T^*}\right)^{1/2} \left[\sum_{k=0}^n a_k\right]$	$k\left(\frac{T^*}{T}\right)^k \right]^{-1}$										
		II. Cr	itical Constants										
		Methane	n-Octane		Water								
$T^*_{ ho^*}$	190 0.1	0.7 K 6205 g · cm ⁻³	568.8 K 0.23217 g · cm	-3 664 0.3	47.27 K 17763 g · cm ^{−3}								
		III.	Coefficients a_k										
k		Methane	n-Octane		Water								
0 1 2 3		0.00643022 0.00960573 0.00353855 0.00081493	0.00642742 0.00309416 0.00045200 -0.00013078	2 5) 3 —	0.0181583 0.0177624 0.0105287 -0.0036744								
		IV.	Coefficients b _{ij}										
i∖j	0	1	2	3	• 4								
		(/	A) Methane										
0 1 2 3 4	0.638016 0.799681 14.746602 55.551431 55.721564	0.029595 - 3.989641 - 21.865741 - 35.267714 - 12.576820	$\begin{array}{r} 0.146250\\ 0.301287\\ -14.117418\\ -46.449877\\ -37.083285\end{array}$	0.511526 5.569193 23.074331 37.476870 22.909872	0.3972737 2.5482398 5.1006388 7.3272599 3.7505328								
		(1	B) n-Octane										
0 1 2 3 4	0.966135 1.579156 10.175758 28.516915 25.579042	-0.131849 -1.461535 -7.421997 -13.452535 -8.380997	0.039584 -1.396700 -10.647996 -21.467961 -13.578572	0.256352 2.060335 10.366272 17.041952 7.785231	$\begin{array}{r} -0.1221866 \\ -0.4747973 \\ -2.4223190 \\ -3.1071504 \\ -1.0881270 \end{array}$								
		((C) Water										
0 1 2 3 4 5	$\begin{array}{c} 0.501938\\ 0.162888\\ -0.130356\\ 0.907919\\ -0.551119\\ 0.146543\end{array}$	0.235622 0.789393 0.673665 1.207552 0.0670665 0.084337	$\begin{array}{c} -0.274637\\ -0.743539\\ -0.959456\\ -0.687343\\ -0.497089\\ 0.195286\end{array}$	$\begin{array}{c} 0.145831\\ 0.263129\\ 0.347247\\ 0.213486\\ 0.100754\\ -0.032932 \end{array}$	$\begin{array}{r} -0.0270448\\ -0.0253093\\ -0.0267758\\ -0.0822904\\ 0.0602253\\ -0.0202595\end{array}$								

$(\eta\xi)^{(0)}\times 10^{-3}$
for
Values
Fluid
Simple
Table II.

	10.0	20694	15591	12094	9789	8260	7213	6460	5885	5595	5418	5251	5171	5092	5016	4941	4867	4655	4325	4018	3735	3241	2845	2547	2335	2195	2114	2083	2091
	7.0	16850	13261	10701	8935	7706	6820	6146	5600	5312	5131	4958	4874	4792	4711	4631	4553	4326	3971	3645	3348	2849	2469	2192	1996	1864	1782	1740	1730
	5.0	14670	11782	9668	8164	7086	6282	5648	5118	4831	4650	4476	4392	4308	4226	4146	4067	3838	3482	3162	2878	2419	2089	1856	1695	1591	1529	1499	1496
	3.0	12922	10487	8649	7301	6301	5528	4896	4349	4048	3856	3670	3579	3489	3401	3314	3228	2980	2596	2261	1990	1640	1451	1347	1290	1263	1257	1267	1289
	2.0	12244	9944	8177	6858	5862	5076	4418	3835	3505	3291	3080	2975	2871	2766	2662	2558	2245	1757	1431	1268	1145	1110	1103	1109	1125	1148	1177	1211
	1.5	11962	9705	7956	6639	5634	4833	4152	3535	3178	2940	2699	2576	2450	2321	2187	2047	1601	1130	1007	974	972	066	1013	1041	1071	1105	1141	1180
	1.2	11812	9574	7830	6209	5496	4681	3982	3338	2956	2694	2417	2268	2109	1934	1732	1487	786	874	862	870	901	936	971	1007	1044	1082	1122	1163
$P_{\rm r}$	1.0	11721	9492	7749	6424	5403	4578	3865	3197	2792	2504	2182	1994	1760	1152	891	849	801	790	803	822	865	907	948	988	1028	1069	1110	1153
	0.80	11636	9415	7670	6340	5310	4474	3743	3048	2610	2280	774	753	740	731	726	723	723	739	762	787	836	883	927	970	1013	1056	1100	1143
	0.60	11560	9343	7595	6257	5217	4367	3618	2887	676	662	658	658	629	662	665	668	681	706	734	761	813	863	910	955	1000	1045	1089	1134
	0.40	11491	9276	7522	6175	5124	4259	3487	592	597	604	613	618	623	629	634	640	657	685	714	742	795	846	894	942	988	1034	1080	1125
	0.20	11429	9214	7452	6095	5031	510	529	555	573	585	597	603	609	615	621	627	644	673	701	729	781	832	882	930	677	1024	1070	1116
	0.10	11402	9185	7419	444	465	493	523	554	572	584	596	601	607	613	619	625	642	670	697	724	776	826	876	925	972	1019	1066	1111
	0.05	11389	9171	406	435	465	496	526	556	574	585	596	602	608	613	619	625	641	668	695	722	773	824	873	922	970	1017	1063	1109
	0.01	349	381	412	443	473	502	531	559	576	587	598	603	609	614	620	625	641	668	694	720	771	822	871	920	968	1015	1062	- 1107
I	T_r	0.55	09.0	0.65	0.70	0.75	0.80	0.85	06.0	0.93	0.95	0.97	0.98	0.99	1.00	1.01	1.02	1.05	1.10	1.15	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00

Okeson and Rowley

$(\eta\xi)^{(1)} \times 10^{-3}$
Values for
Deviation
Size/Shape
Table III.

	10.0	28405	21600	14859	12095	9555	7296	5367	4375	3783	3245	2996	2759	2535	2323	2123	1591	910	444	146	-105	-107	-22	65	119	128	93	18
	7.0	32225	22/93	13523	10352	7674	5437	3623	2728	2208	1745	1534	1337	1152	980	819	405	- 90	- 387	-537	-557	-400	-211	-52	60	126	152	146
	5.0	33902	23576	13258	9884	7119	4869	3084	2217	1718	1276	1076	889	715	553	402	15	-441	- 706	-822	-762	-539	-313	-135	-13	63	101	111
	3.0	34689	17800	13356	9897	7110	4872	3115	2264	1772	1335	1135	948	772	606	451	43	-452	-691	-694	-474	-281	-158	-86	46	- 28	- 24	-32
	2.0	34701	24222	13492	10052	7292	5088	3364	2527	2039	1601	1397	1203	1017	838	665	177	-310	- 264	-172	-100	-87	- 88	- 94	-103	- 115	130	- 148
	1.5	34600	17076	13572	10158	7426	5251	3555	2732	2251	1813	1606	1402	1198	987	760	49	11	42	25	-26	-67	-99	-124		-167	-188	-209
	1.2	34503	24211 17008	13621	10230	7519	5367	3695	2889	2417	1985	1774	1557	1312	967	365	159	125	79	38	-29	- 79	-117	-148	-174	-199	-222	- 245
$P_{\rm r}$	1.0	34422	24190 18010	13654	10280	7586	5452	3802	3012	2556	2141	1940	1721	862	277	223	159	104	59	20	- 44	-93	-132	- 164	- 193	-218	243	-267
	0.80	34328	24162 18018	13687	10333	7658	5544	3922	3160	2739	251	192	165	149	136	126	100	62	26	-8	-65	- 111	-149	- 181	-210	-237	-262	- 287
	0.60	34219	24120 18022	13719	10387	7733	5644	4059	105	61	82	78	73	69	64	59	43	15	- 14	-41	-89	-130	-166	-197	- 226	-253	-279	-305
	0.40	34097	24081 18022	13750	10443	7813	5752	24	24	21	16	13	10	7	ς	ī	-13	34	-56	- <i>TT</i>	-116	-151	-182	-212	240	-267	- 293	-319
	0.20	33959	24020 18018	13780	10500	-33	- 26	- 31	- 37	-42	-47	-50	-53	-55	- 58	-61	- 70	-85	-100	-114	- 143	- 171	- 198	-225	-251	-277	- 304	-331
	0.10	33884	18014	-54	-49	-52	- 59	-68	- 74	78	-82	-84	-86	-89	91	- 93	- 99	-111	- 122	-133	-157	-180	-205	-230	- 255	-281	- 308	-335
	0.05	33845	61607	- 09-	-67	- 74	-82	- 89	- 94	- 98	-101	-102	-104	-106	-108	-109	-115	- 124	-133	-143	-163	-185	-208	-232	257	-283	- 309	-336
	0.01	-55	- 0% -	-87	-93	98	-103	-108	-112	-114	-116	-118	-119	-120	-121	-123	-127	-134	142	- 150	-169	-189	-211	234	- 258		-310	-337
	T_r	0.55	0.65	0.70	0.75	0.80	0.85	06.0	0.93	0.95	0.97	0.98	0.99	1.00	1.01	1.02	1.05	1.10	1.15	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00

Corresponding States for Viscosity

$(\eta\xi)^{(2)} \times 10^{-3}$
for
Values
Deviation
Polar
IV.
Table

	10.0	3629	2660	2653	2469	2043	1492	927	416	151	- 6	-147	-211	-271	-327	-379	-427	- 549	684	747	- 753	-652	-480	-301	-152	48	×	17	-16
	7.0	8280	4870	3359	2359	1520	786	168	-318	- 546	-671	-778	-823	-865	-902	935	-963	-1027	-1067	-1042	971	- 746	-485	-241	-38	117	226	293	324
	5.0	10683	6266	4096	2716	1673	840	184	-306	-528	-649	- 749	- 791	-830	-864	-894	-920	-978	-1014	- 991	-924	- 703	434	-177	37	202	320	400	449
	3.0	12328	7385	4866	3295	2160	1296	642	166	47	-163	-261	304	- 343	-379	-412	-442	-517	- 598	-616	-558	-320	-87	90	221	318	389	441	478
	2.0	12815	7780	5209	3622	2498	1657	1035	592	397	291	200	159	120	83	47	11	-102	-260	-209	91	61	155	229	291	344	387	422	451
	1.5	12962	7924	5358	3786	2682	1866	1272	859	683	589	508	471	433	393	347	288	7	-10	87	128	176	219	262	304	342	376	405	430
	1.2	13018	1661	5438	3882	2796	2000	1428	1040	882	802	736	704	668	615	508	220	77	149	170	183	208	238	272	305	337	367	394	417
$P_{\rm r}$	1.0	13040	8026	5487	3945	2874	2093	1537	1171	1031	967	923	906	885	485	143	141	159	179	190	198	219	245	274	304	334	361	386	409
	0.80	13050	8054	5531	4006	2951	2188	1652	1312	1198	1166	147	135	139	145	152	158	172	186	195	204	223	248	275	303	330	356	380	402
	09.0	13048	8074	5572	4066	3029	2285	1771	1466	90	114	133	141	147	153	158	162	173	185	194	203	224	248	274	300	326	350	374	395
	0.40	13032	8085	5607	4123	3108	2384	1896	94	120	132	142	146	149	153 -	156	159	167	178	188	199	222	247	273	298	323	346	369	390
	0.20	13003	8088	5637	4179	3186	56	92	114	123	129	135	137	140	142	145	147	155	167	180	192	218	245	271	296	321	344	366	387
	0.10	12984	8085	5650	26	57	77	93	107	115	120	125	128	130	133	136	139	147	160	174	188	216	244	270	296	320	343	365	386
	0.05	12972	8083	29	46	90	73	86	66	108	113	119	122	125	128	130	133	142	157	171	186	215	243	270	295	320	343	365	386
	0.01	17	20	27	37	49	62	77	92	101	107	113	116	119	123	126	129	138	154	169	184	214	242	270	295	320	343	365	386
I	T_r	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.93	0.95	0.97	0.98	0.99	1.00	1.01	1.02	1.05	1.10	1.15	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00

				P _r			
T _r	0.01	0.05	0.10	0.20	0.40	0.60	0.80
0.55	11379	384	740				,
0.60	9151	385	486				
0.65	7325	7402	440	849			
0.70	5748	6016	6055	572	5118		
0.75	4186	4846	4965	512	1225		
0.80	2883	3681	3972	4141	730	2179	
0.85	2448	2446	2902	3262	613	989	
0.90	1051	1592	1817	2249	2685	730	117
0.93	653	1190	1377	1634	2095	2399	94
0.95		842	1089	1309	1655	1995	85
0.97			748	965	1239	1501	185
0.98				759	1014	1236	154
0.99					725	904	116

Table V. Auxiliary Simple Fluid Values for $(\eta \xi)^{(0)} \times 10^{-3}$

Table VI. Auxiliary Size/Shape Deviation Values for $(\eta\xi)^{(1)} \times 10^{-3}$

				$P_{\rm r}$			
T _r	0.01	0.05	0.10	0.20	0.40	0.60	0.80
0.55	33814	- 38	- 369				
0.60	23989	- 46	-143				
0.65	18174	18012	_77	577			
0.70	14442	13851	13794	-185	-6339		
0.75	12069	10824	10579	-71	-837		
0.80	9288	8747	8226	7918	-176	-1334	
0.85	4232	7097	6616	6076	-11	-147	
0.90	2440	4164	4888	4776	4288	1 77	326
0.93	856	2301	3105	3751	3659	3355	318
0.95		1381	1951	2671	3139	3000	303
0.97			960	1519	2202	2524	2421
0.98				944	1565	2038	2243
0.99					807	1281	1765

				P _r			
T _r	0.01	0.05	0.10	0.20	0.40	0.60	0.80
0.55	12963	-43	- 574				
0.60	8099	4	-163				
0.65	5786	5657	-32	-673			
0.70	4719	4256	4205	-179	-7048		
0.75	4474	3459	3262	-16	-1033		
0.80	3833	3195	2760	2502	-231	-1952	
0.85	1247	3144	2666	2189	5	-360	
0.90	878	1968	2380	2156	1688	5	-1
0.93	426	968	1510	1893	1694	1400	95
0.95		604	868	1341	1599	1421	134
0.97			471	696	1126	1327	1201
0.98				473	753	1067	1196
0.99					443	643	950

Table VII. Auxiliary Polar Deviation Values for $(\eta\xi)^{(2)} \times 10^{-3}$

cise care near the saturation line to ensure that the viscosity is indeed calculated for the desired fluid phase regardless of the actual phases of the individual reference fluids. Because the three reference fluids do not obey two-parameter corresponding states, the actual saturation curve for the references may not exactly correspond to the lines drawn. Likewise, the possibility exists that the phase of the test fluid may not correspond to the phase shown in Tables II–IV. To accommondate this possibility, Tables V–VII provide auxiliary values for the region where this may occur. These values are for the opposite phase of those given Tables II–IV. With the full computer program, ELK determines the appropriate phase at the input conditions and finds the correct roots. In the hand implementation of the method, one must know the phase at the desired conditions and choose the auxiliary tables if the phase is opposite that shown in the primary tables.

3. RESULTS OF TESTS

3.1. Nonpolar Fluids

The prediction method has been tested for 36 different nonpolar fluids, a total of 5748 different points, as shown in Table VIII. In this and subsequent tables, N represents the number of experimental points compared, AAD is an absolute average percentage deviation of calculated and

	P of				I	ELK	TR	APP
Fluid	No(s).	N	T _r	P _s	AAD	Bias	AAD	Bias
Methane	9–14	742	0.552.00	0.01-8.81	4.10	1.59	3.61	2.19
Ethane	23-25	370	0.65-1.67	0.02-9.89	2.91	-1.86	2.66	0.71
Propane	13, 26	118	0.58-1.29	0.02-8.11	4.36	-2.87	4.26	-1.70
n-Butane	27,28	190	0.65-1.20	0.03-9.31	4.50	-1.81	3.53	0.47
Isobutane	29	46	0.76-1.09	0.19-9.44	12.15	-11.37	9.90	- 8.30
n-Pentane	30, 31	318	0.63-1.17	0.03-9.02	3.94	-2.81	2.04	0.44
Isopentane	32	289	0.61-1.15	0.03-8.85	6.69	-6.69	6.10	4.84
Neopentane	33	33	0.72-1.02	0.22-8.62	28.77	-28.77	28.98	-28.98
n-Hexane	34	204	0.59-1.08	0.038.42	4.61	-3.11	3.20	-0.33
n-Heptane	16	234	0.55-1.01	0.04-9.24	2.51	-0.27	5.40	4.02
n-Octane	10, 16–19	192	0.57-1.00	0.04-8.14	0.99	0.08	6.62	5.55
Isooctane	32	172	0.55-0.99	0.04-9.73	13.56	-13.56	14.21	14.14
n-Nonane	35	14	0.56-0.78	0.04-8.56	2.76	-2.76	2.13	1.56
n-Decane	35-37	68	0.56-0.78	0.05-9.75	4.49	-441	1 53	0.83
n-Undecane	32	62	0.56-0.81	0.05-7.61	3.56	-2.59	3.16	3 16
n-Dodecane	32	55	0.56-0.79	0.05-8.24	4.47	-420	3.04	3.04
n-Tetradecane	35	8	0.57-0.76	0.07-6.81	12.61	-12.61	1.44	-0.91
Ethylene	10	50	1.05-1.50	0.02-8.04	3.60	-2.54	2.70	-0.86
Propylene	10	68	0.80-1.43	0.02-8.81	7.99	-7.84	7.36	~613
1-Hexene	32	127	0.56-0.74	0.03-9.46	20.30	20.30	20.23	20.23
1-Heptene	32	120	0.56-0.91	0.04-8.83	10.60	10.47	21.03	21.03
1-Octene	32	98	0.56-0.86	0.04-9.54	7.10	3.01	9.10	7.22
Benzene	14	299	0.58-1.25	0.02-8.18	5.89	- 5.69	5.35	-4.69
Toluene	32	212	0.56-0.93	0.02-9.76	5.08	4.96	5.11	5.11
Ethylbenzene	32	148	0.55-0.91	0.03-8.33	2.81	-1.17	1.62	0.25
Cyclohexane	32	233	0.56-0.94	0.02-9.83	41.54	-41.54	43.69	-43.69
Methylcyclohexane	32	198	0.56-0.93	0.29-8.65	26.38	-26.38	28.99	- 28.99
Ethylcyclohexane	32	88	0.56-0.85	0.33-8.33	13.81	-13.81	23.04	-23.04
Neon	38, 39	54	0.61-1.80	0.04-3.99	16.17	-15.79	19.62	-18.52
Argon	11, 40, 41	132	0.71-1.98	0.06-9.69	5.49	- 5.36	6.69	-445
Krypton	42	71	1.42-1.66	0.138.96	2.97	-2.88	3.23	-0.30
Xenon	32	84	1.04-1.21	0.02-1.71	5.54	- 5.29	3.88	-1.17
Nitrogen	32	228	0.55-1.98	0.03-8.85	5.90	-4.25	6.00	-2.73
Oxygen	32	225	0.58-1.94	0.02-8.93	3.54	2.86	3.54	2.60
Fluorine	43	149	0.62-1.87	0.07-4.23	5.98	-0.29	6.07	2.80
Carbon dioxide	44	49	1.03-1.14	0.15-9.35	4.24	1.80	6.66	6.66
Overall		5748	0.55-2.00	0.01–9.89	7.88	-4.45	8.32	2.77

Table VIII. Comparison of Results for Nonpolar Fluids

experimental viscosities, bias is a percentage bias from the mean, and REF indicates the references from which the experimental data were obtained. Also shown in Table VIII are the results from TRAPP. The intent of the comparison is not to establish the superiority of one method over the other. Rather, the intent is to show that for nonpolar fluids ELK predictions are comparable to TRAPP's in accuracy. The predicted values are quite good for most systems, although, as is well known, cycloalkanes and some highly branched aliphatic alkanes do not obey corresponding states very well as indicated by the large biases. It should be emphasized that these results cover a large $T_r - P_r$ range including both liquid and vapor phases.

Illustration of the agreement with experiment over a wide range of temperatures and densities is shown in Figs. 1 and 2. Figure 1 shows very good agreement between predicted and experimental viscosities for liquid *n*-dodecane and illustrates the importance of the size/shape addition to two-parameter corresponding states. A substantial portion of the total viscosity is contributed by the $\alpha(\eta\xi)^{(1)}$ term as seen by the difference between the simple fluid results (dashed line) and the ELK predictions (solid line). In Fig. 2 for gas-phase *n*-pentane, the agreement is quite good at lower densities but deteriorates at higher gas densities. Although not shown on

Fig. 1. Comparison of *n*-dodecane liquid viscosities predicted by ELK (solid line) with experimental data at various reduced temperatures. The dashed line represents the contribution from two-parameter corresponding states.

Fig. 2. Percentage deviation between calculated and experimental viscosities of gas-phase *n*-pentane.

this figure, at higher (liquid) densities agreement is again good. The size/ shape term affects liquid values much more than vapor, but it is nevertheless essential for calculations of either phase if accuracy is desired. The overall predictions are reasonably good for a general correspondingstates predictive method that is valid for any fluid phase over most of the experimentally accessible P_r-T_r domain. As mentioned, the advantage of ELK is that the same α and β used for thermodynamic property prediction are used for the viscosity calculations, making the method self-consistent.

3.2. Polar Fluids

ELK was also tested on 15 different polar fluids, a total of 1500 different points over a wide range of T_r-P_r as shown in Table IX. The results are quite good for many systems, but some show a significant bias. The same values of β used for thermodynamic calculations are also used for these predictions. The agreement with experimental data for *n*-butyl acetate and dimethyl ether are shown in Figs. 3 and 4, respectively. As can be deduced from Tables II–VII, the polar contribution, $\beta(\eta\xi)^{(2)}$, is quite small in the gas phase except at higher densities. The polar contribution for liquids is more substantial but still not as large as the size/shape contribution except at low temperatures, as illustrated for chlorodifluoromethane in Fig. 5. The relative importance of these effects has been noted before [21].

Fluid	Ref. No.	N	T _r	P _r	ELK		TRAPP	
					AAD	Bias	AAD	Bias
Dimethyl ether	10	87	0.93-1.34	0.02-9.42	3.58	3.01	9.03	8.22
Diethyl ether	10	61	0.87-1.12	0.03-8.13	7.85	7.85	14.54	14.31
Acetone	10	36	0.94-1.06	0.02-8.40	11.42	-7.60	5.74	- 5.74
Ammonia	45	82	0.77-1.18	0.01-2.96	8.73	5.77	11.30	1.72
n-Propyl acetate	32	118	0.58-0.91	0.03-8.77	8.67	7.32	13.50	12.99
n-Butyl acetate	32	108	0.55-0.83	0.03-9.31	3.51	-3.42	7.22	7.22
Carbon monoxide	46	12	1.68-1.87	0.36-2.82	1.56	-1.55	2.77	2.77
Dichlorodi fluoro-								
methane	32	160	0.65-1.12	0.97–9.41	7.11	-7.10	4.65	-3.33
Chlorodi fluoro-								
methane	14, 32	271	0.68-1.28	0.04-7.84	5.75	-1.36	4.71	2.10
1,1,2-Trichloro-1,2,2	2-							
trifluoroethane	32	184	0.55-0.99	0.03-8.57	33.41	- 33.41	33.40	-33.40
Methanol	10	61	0.83-1.06	0.01-8.77	7.20	6.27	10.57	1.16
Ethanol	10	94	0.55-1.05	0.02-9.64	11.68	-4.36	18.41	- 5.61
n-Propanol	32	150	0.60-1.02	0.02-9.42	10.99	5.14	21.40	-3.71
Isopropanol	10	48	0.84-1.05	0.02-8.29	8.84	-5.17	8.62	-0.84
Isobutanol	10	28	0.90-1.00	0.02-9.18	4.20	1.14	13.34	8.75
Overall		1500	0.55–1.87	0.01-9.64	10.62	-5.34	13.01	-2.80

Table IX. Comparison of Results for Polar Fluids

Fig. 3. Percentage deviation between calculated and experimental viscosities of liquid-phase *n*-butyl acetate.

Corresponding States for Viscosity

Fig. 4. Percentage deviation between calculated and experimental viscosities of dimethyl ether.

Fig. 5. Comparison of chlorodifluoromethane liquid viscosities predicted by ELK (solid line) with experimental data at various reduced temperatures. The dashed line represents the calculated viscosity without the polar correction term.

3.3. Associating Fluids

ELK predictions for small-chain alcohols are inadequate if α and β values for the monomers are input. A chemical theory was therefore used for alcohols of four carbons or fewer. It is assumed that in the liquid phase, equilibrium is established between the monomeric and the dimeric forms with the equilibrium constant, K, given by

$$K = x_{\rm D} / x_{\rm M}^2 \tag{6}$$

where x_D is the mole fraction of dimer and x_M is the mole fraction of monomer. The equilibrium constant is calculated from

$$\ln\left(\frac{K}{K_0}\right) = -\left(\frac{\Delta H}{R}\right)\left(\frac{1}{T} - \frac{1}{T_0}\right) \tag{7}$$

where both the heat of dimerization, ΔH , and the equilibrium constant at the reference temperature T_0 were obtained from Stathis and Tassios [22]. For completeness, these values are tabulated in Table X. Values for α and β for the assumed mixture of monomer and dimer were then calculated from a mole fraction average of the pure values; i.e.,

$$\alpha = x_{M}\alpha_{M} + x_{D}\alpha_{D}$$
 and $\beta = x_{M}\beta_{M} + x_{D}\beta_{D}$ (8)

where the mole fractions are obtained from the solution of Eq. (7) subject to the constraint on the sum of mole fractions. Because no values of α_D and β_D were available for dimerized species, these values were obtained by regression from experimental data and are also included in Table X. Results for fluids assumed to associate are included in Table IX.

Component	α _D	β_{D}	K _o	$\frac{\varDelta H}{(\mathbf{kJ}\cdot\mathbf{mol}^{-1})}$
Methanol	0.46	-0.46	450	- 29.29
Ethanol	1.22	0.00	190	-29.29
n-Propanol	1.24	-0.26	90	-29.29
Isopropanol	1.10	-1.28	60	- 29.29
Isobutanol	1.38	-0.78	45	-29.29

 Table X.
 Parameter Values Used for Dimerizing Liquids

4. CONCLUSIONS

The extended Lee-Kesler method has been adapted to the calculation of pure-component viscosity of polar and nonpolar fluids. The result is a four-parameter corresponding-states method requiring the critical temperature, the critical pressure, a size/shape parameter α , and a polar interaction parameter β . However, the values of α and β are those previously correlated and tabulated for calculation of equilibrium thermodynamic properties. Thus, the method contains no adjustable parameters and is predictive in nature. With the method, viscosities can be calculated within the range $0.55 \le T_r \le 2.00$ and $0 < P_r \le 10$. Agreement between predicted and experimental viscosities is generally quite good, but there are notable exceptions. Olefins and highly branched and cyclic alkanes do not obey the corresponding-states methodology used either here or in TRAPP very well. For short-chain alcohols, an association model is required which uses empirical values for $\alpha_{\rm D}$ and $\beta_{\rm D}$. These values are also tabulated in this paper. The method is intended to extend the generalized LK technique to viscosity predictions using only the same fundamental constants currently used for equilibrium properties.

REFERENCES

- 1. B. I. Lee and M. G. Kesler, AIChE J. 21:510 (1975).
- 2. W. V. Wilding and R. L. Rowley, Int. J. Thermophys. 7:525 (1986).
- 3. W. V. Wilding, J. K. Johnson, and R. L. Rowley, Int. J. Thermophys. 8:717 (1987).
- 4. J. K. Johnson and R. L. Rowley, Fluid Phase Equil. 44:255 (1989).
- 5. J. K. Johnson and R. L. Rowley, Int. J. Thermophys. 10:479 (1989).
- 6. J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fund. 20:323 (1981).
- 7. M. J. Hwang and W. B. Whiting, Ind. Eng. Chem. Res. 26:1758 (1987).
- 8. L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables (Hemisphere, New York, 1984).
- 9. J. P. Boon, J. C. Legros, and G. Thomaes, Physica 33:547 (1967).
- 10. I. F. Golubev, *Viscosity of Gases and Gas Mixtures, a Handbook* (Israel Program for Scientific Translations, Jerusalem, 1970).
- 11. W. M. Haynes, Physica 67:440 (1973); Physica 70:410 (1973).
- 12. J. Hellemans, H. Zink, and O. Van Paemel, Physica 46:395 (1970).
- 13. E. T. S. Huang, G. W. Swift, and F. Kurata, AIChE J. 12:932 (1966).
- 14. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed. (John Wiley and Sons, New York, 1975).
- 15. J. A. Jossi, L. I. Stiel, and G. Thodos, AIChE J. 8:59 (1962).
- 16. N. A. Agaev and I. F. Golubev, Gazov. Promst. 8:50 (1963).
- 17. L. T. Carmichael and B. H. Sage, AIChE J. 12:559 (1966).
- 18. J. C. McCoubrey, J. N. McCrea, and A. R. Ubbelohde, J. Chem. Soc. 1961 (1951).
- 19. R. M. Melaven and E. Mack, Jr., J. Am. Chem. Soc. 54:888 (1932).

Okeson and Rowley

- K. J. Okeson, A Four-Parameter Corresponding-States Method for the Prediction of Newtonian, Pure-Component Viscosity, M.S. thesis (Brigham Young University, Provo, Utah, 1989).
- 21. R. C. Reid, J. M. Prausnitz, and B. E. Poling, *The Properties of Gases & Liquids*, 4th ed. (McGraw-Hill, New York, 1987).
- 22. P. J. Stathis and D. P. Tassios, Ind. Eng. Chem. Process Dev. 24:701 (1985).
- 23. L. T. Carmichael and B. H. Sage, J. Chem. Eng. Data 8:94 (1963).
- 24. D. D. Diller and J. M. Saber, Physica 108A:143 (1981).
- 25. B. E. Eakin, K. E. Starling, J. P. Dolan, and R. T. Ellington, J. Chem. Eng. Data 7:33 (1962).
- 26. L. T. Carmichael, V. M. Berry, and B. H. Sage, J. Chem. Eng. Data 6:411 (1964).
- 27. L. T. Carmichael and B. H. Sage, J. Chem. Eng. Data 8:612 (1963).
- J. P. Dolan, K. E. Starling, A. L. Lee, B. E. Eakin, and R. T. Ellington, J. Chem. Eng. Data 8:396 (1962).
- 29. M. H. Gonzalez and A. L. Lee, J. Chem. Eng. Data 11:357 (1966).
- 30. N. A. Agaev and I. F. Golubev, Gazov. Promst. 8:45 (1963).
- 31. A. L. Lee and R. T. Ellington, J. Chem. Eng. Data 10:101 (1965).
- 32. K. Stephan and K. Lucas, Viscosity of Dense Fluids (Plenum Press, New York, 1979).
- 33. M. H. Gonzalez and A. L. Lee, J. Chem. Eng. Data 13:66 (1968).
- 34. N. A. Agaev and I. F. Golubev, Dokl. Phys. Chem. 151:597 (1963).
- 35. Y. L. Rastorguyev and A. S. Keramidi, Fluid Mech. Sov. Res. 3:156 (1974).
- 36. L. T. Carmichael, V. M. Berry, and B. H. Sage, J. Chem. Eng. Data 14:27 (1969).
- 37. A. L. Lee and R. T. Ellington, J. Chem. Eng. Data 10:346 (1965).
- J. M. J. Coremans, A. Van Itterbeek, J. J. M. Beenakker, H. F. P. Knaap, and P. Zandbergen, *Physica* 24:557 (1958).
- 39. W. Herreman and W. Grevendonk, Cryogenics 14:395 (1974).
- 40. G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys. 38:154 (1963).
- 41. A. Michels, A. Boltzen, and W. Schuurman, Physica 20:1141 (1954).
- 42. N. J. Trappeniers, A. Boltzen, J. Van Oosten, and H. R. Van Den Berg, *Physica* 31:945 (1965).
- 43. W. M. Haynes, Physica 76:1 (1974).
- 44. A. Michels, A. Boltzen, and W. Schuurman, Physica 23:95 (1957).
- 45. L. T. Carmichael, H. H. Reamer, and B. H. Sage, J. Chem. Eng. Data 8:400 (1963).
- 46. A. K. Barua, M. Afzal, G. P. Flynn, and J. Ross, J. Chem. Phys. 41:374 (1964).